Experiment 3 (M5)

The Horizontal Projectile Motion

1- Purpose

To examine the horizontal projectile motion in the inclined plane

2- Apparatus

Air table set, launcher, wooden block, ruler.

3- Theory

An object, launched horizontally with an initial velocity $v_{o x}$, moves under the influence of gravitation. This motion, called as horizontal projectile motion(Fig. 3.1), has two components: one is horizontal component and the other one is vertical component. Horizontal component obeys Newton's $1^{\text {st }}$ Law of Equilibrium and vertical component obeys Newton's $2^{\text {nd }}$ Law of Motion; $1^{\text {st }}$ and $2^{\text {nd }}$ experiments, respectively.

Fig 3.1 path of a horizontal projectile motion

The motion in the horizontal component (say x - axis) has an equation of motion as:

$$
\begin{aligned}
& x(t)=\vartheta_{o x} \cdot t=\vartheta_{o x} \cdot t \\
& \text { at } t=0, \quad \vartheta_{o x}=\vartheta_{o}
\end{aligned}
$$

Additionally, the motion in the vertical component (say y-axis) has an equation of motion as:

$$
\begin{gathered}
y(t)=\vartheta_{o y} \cdot t+\frac{1}{2} a \cdot t^{2}=\frac{1}{2} a \cdot t^{2} \\
\text { at } t=0, \quad \vartheta_{o y}=0
\end{gathered}
$$

If we insert t (from Eq. 3.1) into Eq. 3.2, finally we get the equation of motion in vertical component (y - axis) in terms of x (displacement in horizontal component):

$$
y(x)=\frac{a}{2 \vartheta_{o}^{2}} x^{2}
$$

4- Procedure

- Operate air compressor and balance the air table.
- Locate the wooden block to the back leg of the air table and find the slope of the air table.
- Keep one of the discs (pucks) unmoved at the left (or right) lower side of the air table.
- Locate the launcher, whose angle is adjusted to zero, at the right (or left) upper side of the air table.
- Put the other disc (puck) to the launcher and practise launching. When you are ready, follow $6^{\text {th }}$ step.
- Adjust spark timer (generator) to a proper frequency or period.
- Operate again air compressor and launch the disc (puck). Be careful while gethering data (path A): As soon as you launch the disc (puck) push the spark timer (generator) pedal.
- Just after you gether horizontal projectile motion data, locate the disc (puck) to the top of the air table and gether the free fall data (path B).
- Check out your data if it is proper.
- Give numbers to your data points $0,1, \ldots, 5$ starting from first data point.
- Find out x - and y - axes on your data sheet (apply parallel fitting).
- Find flight time t_{f}, range (travelled distance on x-axis) R. Using these two data, calculate the initial velocity of the disc (puck) $v_{o x}$.
- Starting from zero point show the displacements on y - axis (use dimensioning rules). Record them into table 3.1.

Fig. 3.2 Data dimensioning

- Determine the accelerations of path A and path B plotting y- t^{2} graph, seperately.
- Compare these result with teoretical one, $980 \mathrm{~cm} / \mathrm{s}^{2}$.

5- Data

	B path		A path		
$\#$	$\mathrm{x} \pm \Delta \mathrm{x}$	$\mathrm{y} \pm \Delta \mathrm{y}$	$\mathrm{y} \pm \Delta \mathrm{y}$	$\mathrm{t} \pm \Delta \mathrm{t}$	$\mathrm{t}^{2} \pm \Delta \mathrm{t}^{2}$
0					
1					
2					
3					
4					
5					

Table 3.1 Horizontal projectile motion data

6. Questions

1. Analyse the motion in x - and y-axes. Which type of motion does the disc follow?
